
Mobility Resistant Clustering in Multi-Hop
Wireless Networks

Miao Yu
Department of Mechanical Engineering, University of Maryland, College Park, MD, USA

Email: mmyu@eng.umd.edu

Jason H. Li and Renato Levy
Intelligent Automation Inc., Rockville, MD, USA

Email: {jli, rlevy}@i-a-i.com

Abstract—This paper presents a Distributed Efficient
Clustering Approach (DECA) for mobility-resistant and
energy-efficient clustering in multi-hop wireless networks.
The clusterheads cover the whole network and each node in
the network can exclusively determine the single cluster it
belongs. DECA is fully distributed, each node transmits only
one message during clustering operation, and the algorithm
terminates in deterministic time without iterations.
Theoretical results show the correctness of DECA, and
extensive simulation results demonstrate that DECA is
energy-efficient and robust against node mobility.

Index Terms—clustering, ad hoc networks, wireless sensor
networks, mobility, performance evaluation

I. INTRODUCTION

Multi-hop ad hoc networks provide a flexible means of
communication when there is no infrastructure or the
existing infrastructure is inconvenient or expensive to
use. Without a fixed infrastructure, routing paths consist
of wireless links whose endpoints are likely to be moving
independently of one another. Consequently, mobile end
systems in an ad hoc network are expected to act
cooperatively to route traffic and adapt the network to the
dynamic state of its links and mobility patterns. Unlike
infrastructure networks where link failures are relatively
rare events, the rate of link failure due to node mobility is
the primary obstacle to routing in ad hoc networks [1].

With the potentially large number of mobile devices in
such networks, scalability becomes a critical issue.
Among the solutions proposed for scaling down networks
with a large number of nodes, network clustering is
among the most investigated. The basic idea is to group
network nodes that are in physical proximity and thereby
logically organize the network into groups with smaller
sizes, and hence simpler to manage.

Clustering protocols have been investigated
extensively for multi-hop wireless networks in the
literature [2]-[6]. While these strategies differ in the
criteria used to organize the clusters, clustering decisions
in these schemes are based on static views of the
network; none of these schemes, even equipped with
local maintenance remedies, is satisfactorily resistant to
node mobility beyond rare and trivial node movements.

Another important category of multi-hop wireless
networks is called wireless sensor networks [7], which
comprise of a larger number of nodes (in thousands and
more) scattered over some region. Sensor nodes are
typically less mobile, and more densely deployed than ad
hoc networks. The sensor nodes gather data from the
environment and they can perform various kinds of
activities including collaborative processing of sensor
data and performing some synchronized actions based on
the gathered sensor data. Typically, sensor nodes are
heavily resource-constrained (especially on power),
irreplaceable, and become unusable after failure or
energy depletion. It is thus crucial to devise novel energy-
efficient solutions for topology organization and routing
that are scalable, efficient and energy conserving in order
to increase the overall network longevity.

Clustering techniques can facilitate in reducing energy
consumption. Network lifetime can be prolonged through
reducing the number of nodes contending for channel
access, summarizing information at the clusterheads, and
routing through an overlay among clusterheads, which
has a relatively small network diameter. In this article, we
present a distributed, efficient clustering approach
(DECA) that outperforms the state-of-the-art in terms of
energy efficiency and possesses the advantages of better
clustering overhead and resilience against node mobility.

The remainder of this paper is organized as follows.
Section II describes the related work, followed by the
revisit of the DECA protocol in Section III. Performance
evaluation is presented in Section IV, and various issues
and application scenarios are discussed in Section V. The
paper is concluded in Section VI.

Based on “A Distributed Efficient Clustering Approach for Ad Hoc
and Sensor Networks”, by J. H. Li, M. Yu, and R. Levy, which
appeared in the Proceedings of the first International Conference on
Mobile Ad Hoc and Sensor Networks, Wuhan, China, December 2005.

12 JOURNAL OF NETWORKS, VOL. 1, NO. 1, MAY 2006

© 2006 ACADEMY PUBLISHER

II. RELATED WORK

Clustering algorithms have been investigated for ad
hoc networks since their appearance. The first solutions
[8][9] aimed at partitioning the nodes into clusters, each
with a clusterhead and some ordinary nodes, so that the
clusterheads form an independent set, i.e., a set whose
nodes are never neighbors among themselves. In general,
the sizes of the constructed clusters should not be very
small so that the efforts for clustering and creating
network hierarchies can justify.

Among scalable routing mechanisms in multi-hop
wireless networks, dominating set based clustering [10]-
[14] serves as one of the most promising approaches. A
subset of vertices in an undirected graph is a dominating
set if every vertex not in the subset is adjacent to at least
one vertex in the subset. Moreover, this dominating set
should be connected for ease of routing within the
induced graph of dominating vertices. The main
advantage of dominating set based routing is that it
simplifies the routing problem to a smaller subnetwork
generated from the connected dominating set.

Using the idea of the connected dominating set (CDS),
Krishna et al. [4] proposed to dynamically organize the
network topology into clusters for routing. A k-cluster is
defined as a subset of nodes that are mutually “reachable”
by a path length of at most k for some fixed k. A k-cluster
with k = 1 is a clique. During the cluster formation, the
network is viewed as a dynamically growing system, and
each node needs information of the entire network
topology. As a result, for “large” networks, the amount of
information to be updated at each mobile node is
significant, which imposes much overhead on the
communication bandwidth. For mobile ad hoc networks,
clique formation usually results in small clusters, unless
the network is really dense.

Sivakumar et al. [10]-[12][15] proposed a series of 2-
level hierarchical routing algorithms for ad hoc wireless
networks. The idea is to identify a subnetwork that forms
a minimum connected dominating set (MCDS). Each
node in the subnetwork is called a spine node and keeps a
routing table that captures the topological structure of the
whole network. In this approach, a connected dominating
set is found by growing a tree T starting from a vertex
with the maximum node degree. Then, a vertex v in T
that has the maximum number of neighbors not in T is
selected. Finally, a spanning tree is constructed and non-
leaf nodes form a connected dominating set. The main
drawback of this algorithm is that it still needs a non-
constant number of rounds to determine a connected
dominating set [14].

Wu et al. [14][16] proposed a series of simple and
efficient localized algorithms that can quickly build a
backbone directly in ad hoc networks. This approach uses
a localized algorithm called the marking process where
hosts interact with others in restricted vicinity. The
resultant dominating set derived from the marking
process is further reduced by applying two pruning rules.
The low complexity of such algorithms translates into
low communication and computation cost; but the
algorithms tend to create large CDSs.

Instead of constructing connected dominating sets, Lin
and Gerla [5] used node ID numbers to build clusters of
nodes that are reachable by two-hop paths. The
distributed clustering algorithm is initiated by all nodes
that have the lowest ID numbers among their neighbors.
The cluster initiators broadcast their decision to all their
neighbors. If all the lower ID neighbors sent their
decisions and none declared itself as a cluster initiator,
the node decides to create its own cluster and broadcasts
its own ID as the cluster ID. Otherwise, it chooses a
neighboring cluster with the lowest ID, and broadcasts
such decision. Ref. [17] generalizes the cluster definition
so that a cluster contains all nodes that are at distance at
most k hops from the initiator.

Similar to [5], Basagni [2] proposed to use nodes’
weights instead of the lowest ID or node degrees in
clusterhead decisions. Weight is defined by mobility
related parameters, such as speed. Ref. [3] further
generalized the scheme by allowing each clusterhead to
have at most k neighboring clusterheads and described an
algorithm of finding a maximal weighted independent set
in wireless networks.

In [6], a hybrid energy-efficient distributed (HEED)
clustering protocol was presented for ad hoc sensor
networks. HEED utilizes node residual energy as the first
criterion and takes a cost function as the second criterion
to compute the score. Each node probabilistically
propagates tentative or final clusterhead announcements
depending on its probability and connectivity. The
clustering process entails a number of rounds of
iterations, and the execution of the protocol at each node
will terminate when the probability of self-election,
which is doubled in every iteration, reaches 1. It has been
shown that HEED outperforms generic clustering
protocols on various aspects.

One of the first protocols that use clustering for
extending network lifetime was the Low-Energy
Adaptive Clustering Hierarchy (LEACH) [18]. In
LEACH, a node elects to become a clusterhead randomly
according to a target number of clusterheads in the
network and its own residual energy. Energy load gets
evenly distributed among the sensors in the network.
LEACH clustering proved to be 4 to 8 times more
effective in extending the network lifetime than direct
communication or minimum energy transfer (shortest
path routing). A limitation of this scheme is that it
requires all current clusterheads to be able to transmit
directly to the sink. Improvements to the basic LEACH
algorithms include multi-layer LEACH-based clustering
and the optimal determination of the number of
clusterheads that minimizes the energy consumption
throughout the network.

None of the above algorithms intends to handle the
scenarios that all the nodes in the network can potentially
move. DECA protocol tackles such problems. The initial
idea was proposed in Ref. [19], and a subsequent study
focused on clustering performance with lossy wireless
channels and synchronization errors [20]. This article
enriches DECA protocol with more extensive results and
insights under different node transmission ranges.

JOURNAL OF NETWORKS, VOL. 1, NO. 1, MAY 2006 13

© 2006 ACADEMY PUBLISHER

III. DECA CLUSTERING ALGORITHM

A. Problem Statement
An ad hoc wireless network is modeled as a set V of

nodes that are interconnected by a set of full-duplex
communication links. Each node has a unique identifier
and has at least one transmitter and one receiver. Two
nodes are neighbors and have a link between them if they
are in the transmission range of each other [21].
Neighboring nodes share the same wireless media, and
each message is transmitted through a local broadcast.

E

Nodes within an ad hoc network may move at any time
without notice, but it is assumed that the node speed is
moderate with respect to the packet transmission latency
and the transmission range of the particular underlying
network hardware. Nodes may join, leave, and rejoin an
ad hoc network at any time, existing links may disappear,
and new links may be formed as the nodes move.

Let the clustering duration be the time interval
taken by the clustering protocol to cluster the network.
Let the network operation interval be the time needed
to execute the intended tasks. In many applications

, which implies that the formed clusters need to
be maintained during the operation period in order to reap
the advantage of clustering. In general, nodes that travel
rapidly in the network may degrade the cluster quality
because they alter the node distribution in their clusters
and make the clusters unstable, possibly long before the
end of . However, research on clustering should not
be restricted only within the arena of static or quasi-
stationary networks where node movements are rare and
slow—some local maintenance mechanisms suffice to
tackle such problems [5][14]. Rather, for applications
where is not much longer than , it is proposed in
this work an efficient protocol that can generate descent
clusters under mild to moderate node mobility.

CT

OT

CO TT >>

OT

OT CT

The problem of clustering is then defined as follows.
For a multi-hop wireless network with node set V , the
goal is to identify a set of clusterheads that cover the
whole network. Each and every node v in set V must be
mapped into exactly one cluster, and each ordinary node
in the cluster must be able to directly communicate to its
clusterhead. The clustering protocol must be completely
distributed, that is, each node independently makes its
decisions based only on local information. Further, the
clustering must terminate fast and execute efficiently in
terms of processing complexity and message exchange.
Finally, the clustering algorithm must be resistant to
moderate mobility in ad hoc networks and at the same
time renders energy-efficiency.

B. Overview of DECA
The DECA algorithm structure is somewhat similar to

that presented in [5] and the HEED protocol [6] in that
each node broadcasts its decision as the clusterhead in the
neighborhood based on some local information and score
function. The difference between DECA and these two
protocols lies in when and how the nodes make such
decisions and how the score gets computed.

In [5] the score is computed based on node identifiers,
and each node holds its message transmission until all its
neighbors with lower IDs have done so. Each node stops
its protocol execution if it knows that every node in its
neighborhood has transmitted. It is assumed that the
network topology does not change during the algorithm
execution, and it is thus valid for each node to wait until
it overhears every higher-scored neighbor transmitting.
With some node mobility, however, this algorithm can
halt since it is quite possible that an initial neighboring
node leaves the transmission range for a node, say v , so
that cannot overhear its transmission. Node v then
has to wait endlessly according to the stopping rule.

v

HEED also assumes static network topology so that
each node can experience rounds of iterations of tentative
or final clusterhead announcement before entering the
finalizing phase to choose its cluster. Under node
mobility, HEED will not halt. However, we observe that
the iterations are not necessary and can potentially harm
the clustering performance due to the possibly excessive
number of announcements during iterations.

 But Ref. [5] does provide important insights on how
distributed clustering should be performed among
neighboring nodes: those nodes with better scores should
announce themselves earlier. We adopt this idea in
DECA—actually many clustering protocols use ideas
similar to this [2][3][9]—and we utilize a score function
that captures node residual energy, connectivity and
identifier. Each node does not need to hold its
announcement until its better-scored neighbors have done
so; each node simply calculates a normalized delay based
on its score and transmits according to the computed
delay. Each node does not need to overhear every
neighbor in order to stop; rather, each node can terminate
its execution in a pre-determined time, estimated based
on its computing capability and node mobility. Further,
each node only transmits one message, rather than going
through rounds of iterations of probabilistic message
announcement. Given the fact that it is communication
that consumes far more energy in sensor nodes compared
with sensing and computation, such savings on message
transmission lead to better energy efficiency.

C. DECA Operation
Each node periodically transmits a Hello message to

identify itself, and based on such Hello messages, each
node maintains a neighbor list. Define for each node the
score function as 1 2 3score w E w C w I= + + , where
stands for the node residual energy, C stands for the
node connectivity,

E

I stands for the node identifier, and
the weights follow . The computed score is
then used to compute the delay for this node to announce
itself as the clusterhead. The higher the score, the sooner
the node will transmit. The computed delay is normalized
between 0 and a certain upper bound , which is a
key parameter that needs to be carefully selected, like the
DIFS parameter in IEEE 802.11. After the clustering
starts, the procedure will terminate after time ,
another key parameter whose selection needs to take the

3

1
1ii

w
=

=∑

maxD

stopT

14 JOURNAL OF NETWORKS, VOL. 1, NO. 1, MAY 2006

© 2006 ACADEMY PUBLISHER

node computation capability and mobility into
consideration. In the simulation, we choose
between and

maxD
10 ms 50 ms− stopT between 1s 2 s− , and

the protocol works well.

1 2 3

I StartClusteringAlgorithm()
 1 myScore
 2 delay (1000 myScore) 100
 3 (delay 0)
 4 broadcastCluster(myId,myCid,myScore);
 5 delayAnnouncement ();
 6 Sc

w E w C w I
.

= + + ;

= − / ;
< if

else
hedule clustering termination.

II. ReceiveClusteringmessage (id,cid,score)
 1 (id==cid)
 2 (myCid==NULL)
 3 (score>myScore)
 4 myCid=cid;
 5 (scor

if
if

if

elseif e>myScore)
 6 (myId==myCid)
 7 needConvert = true;
 8 markBestCluster();

if

else

III. ActualAnnouncement ()
 1 broadcastCluster (myId, myCid, score);

IV. FinalizeClusteringAlgorithm ()
 1 (needConvert)
 2 (!amIHeadforAnyOtherNode ())
 3 convertToNewCluster ();
 4 (myCid == NULL)
 5 myCid = cid;
 6

if
if

if

 broadcastCluster (myId, myCid, score);

The distributed clustering algorithm at each node is
illustrated in the pseudo code. Essentially, clustering is
done periodically and at each clustering epoch, each node
either immediately announces itself as a potential
clusterhead or it holds for some delay time.

Upon receiving clustering messages, a node first
checks whether the node ID and the cluster ID embedded
in the received message are the same; same node and
cluster ID means that the message has been transmitted
from a clusterhead. Further, if the receiving node does not
belong to any cluster, and the received score is better than
its own, the node will mark down the advertised cluster
and wait until its scheduled time to send its message.

If the receiving node currently belongs to some cluster,
and the received score is better than its own score, two
cases are further considered. First, if the current node
receiving a better-scored message is not a clusterhead
itself, as an ordinary node, it can immediately mark down
the best cluster so far (line 8 in II) and wait until its
scheduled announcement. This node will stay in its
committed cluster after its announcement. On the other
hand, if the current node is a clusterhead itself, receiving
a better scored message (due to variant delays and/or
synchronization drifts) means that this node may need to
switch to the better cluster. However, cautions need to be
taken here before switching since the current node, as a
clusterhead, may already have other nodes affiliated with
it. Therefore, inconsistencies can occur if it rushes to
switch to another cluster. In our approach, we simply
mark the necessity for switching (line 7 in II) and defer it
to the finalizing phase, where it checks to make sure that
no other nodes are affiliated with this node in the cluster
as the head, before switching can occur. It is noted that
the switch process mandates that a node needs to leave a
cluster first before joining a new cluster. Further, it is
important to point out that since each node announces
itself according to the computed score, this second case is
really the exception, rather than the normal case. We
include such exception handling for better robustness.

In the finalizing phase, where each node is forced to
enter after stopT , each node checks to see if it needs to
convert. Further, each node checks if it already belongs to
a cluster and will initiate a new cluster with itself as the
head if not so.

D. Correctness and Complexity
The DECA protocol described above is completely

distributed. To show the correctness and efficiency of the
algorithm, the following theoretical results have been
presented in our previous study [20].

Theorem 1. Eventually DECA terminates.

Theorem 2. At the end of Phase III, every node can
determine its cluster and only one cluster.

Theorem 3. When clustering finishes, any two nodes in
a cluster are at most two-hops away.

Theorem 4. In DECA, each node transmits only one
message during the operation.

Theorem 5. The time complexity of DECA is . |)(|VO

IV. PERFORMANCE EVALUATION

In this section, we use an in-house simulation tool
called agent-based ad-hoc network simulator (NetSim) to
implement our protocol and the algorithms proposed by
Krishna et al. [4], Lin and Gerla [5], and HEED [6] for
comparisons. Compared with other network simulators
(for instance ns-2), the most important feature of NetSim
is its capability of handling massive ad-hoc wireless
networks and sensor networks.

In our simulations, random graphs are generated so
that nodes are randomly dispersed in a 1000m× 1000m
region. All nodes have the same transmission radius,
which ranges from 150m to 450m with an increment of
50m. To study mobility resistance, the transmission range
is set to 250m, and we investigate the clustering
performance under different node speed ranges. In
particular, we simulate the following scenarios with
maximum node speed set as 0, 0.1, 1, 5, 10, 20, 30, 40,
and 50 m/s. For each speed, each node takes the same
maximum speed and a large number of random graphs

JOURNAL OF NETWORKS, VOL. 1, NO. 1, MAY 2006 15

© 2006 ACADEMY PUBLISHER

are generated. Simulations are run and results are
averaged over these random graphs.

In general, for any clustering protocol, it is undesirable
to create single-node clusters. Single-node clusters arise
when a node is forced to represent itself (because of not
receiving any clusterhead messages). A cluster may also
contain a single node if this node decides to act as a
clusterhead and all its neighbors register themselves with
other clusterheads. While other clustering algorithms
typically generate lots of single-node clusters as node
mobility gets more aggressive, our algorithm shows much
better resilience in such situations.

We have considered the following metrics for
performance comparisons: 1) the average overhead (in
number of protocol messages); 2) the ratio of the number
of clusters to the total number of nodes in the network; 3)
the ratio of the number of single-node clusters to the total
number of nodes in the network; and 4) the average
residual energy of the clusterheads.

 We first look at static scenarios where nodes do not
move and the quasi-stationary scenarios where the
maximum node speed is bounded at 0.1m/s. We choose
Ref. [5] (referred to as LIN) as a representative for those
general clustering protocols [2][3], and choose Ref. [4]
(KRISHNA) to represent dominating-set based clustering
protocols [10]-[14]. For the state-of-the-art, we choose
HEED [6] to compare with DECA.

From Fig. 1 it is easy to observe that KRISHNA has
the worst clustering performance with respect to cluster
ratios, while DECA and LIN have the best performance.
HEED performs in between. In addition, all four
protocols perform quite consistently under (very) mild
node mobility (i.e., 0.1m/s maximum speed).

During our simulations, both LIN and KRISHNA fail
to generate clusters as the node speed increases. This is
expected. In LIN, the algorithm will not terminate if a
node does not receive a message from each of its
neighbors. Node mobility can make the holding node wait
forever. In KRISHNA, in order to compute clusters, each
node needs accurate information of the entire network
topology, which by itself is extremely vulnerable to node
mobility. In contrast, we found that both HEED and
DECA are quite resilient to node mobility in that they can
generate decent clusters even when each node can
potentially move independently of others. The following
figures compare the performance of DECA and HEED
under different node mobility.

Fig. 2 shows the ratio of the number of clusters and
single-node clusters to the total number of nodes in the
network. All nodes have the same transmission range of
250m. In both cases, DECA significantly outperforms
HEED, with performance gains around 40% in Fig. 2(a)
and 200% in Fig. 2(b).

Fig. 3(a) shows that for DECA, the number of protocol
messages for clustering remains one per node, regardless
of the node speed, as proven in Theorem 4. For HEED,
the number of protocol messages is roughly 1.7−2 for
every node speed. The fact that HEED incurs more
message transmissions is due to the possibly many rounds
of iterations, where each node in every iteration can
potentially send a message to claim itself as the candidate
clusterhead [6].

Fig. 3(b) compares DECA and HEED with respect to
the (normalized) average clusterhead energy. Again,
DECA outperforms HEED with about twice the
clusterhead residual energy. This is in accordance with
Fig. 3(a) where DECA consistently incurs fewer message
transmissions than HEED. Reducing the number of
transmissions is of great importance, especially in sensor
networks, since it would render better energy efficiency
and fewer packet collisions, e.g. in IEEE 802.11 MAC.

We extend our simulations to investigate how DECA
and HEED perform under different node speeds and
transmission ranges. Fig. 4(a) shows that DECA performs
quite consistently in terms of cluster ratio under various
node speeds, and the larger the transmission range, the
lower the cluster ratio (as expected). Such observations
can also be made in Fig. 4(b), where the cluster ratio
curves under different node speeds track each other quite
closely, and the ratio of clusters decreases as the
transmission range increases. Similar observations have
also been made for HEED (figures not shown).

0 10 20 30 40 50
0

0.5

1

1.5

2

2.5

3

node maximum speed (m/s)

nu
m

be
r

of
 m

es
sa

ge
s

pe
r

no
de

 range = 250m

HEED
DECA

0 10 20 30 40 50
10

20

30

40

50

60

70

80

node maximum speed (m/s)

re
si

du
al

 c
lu

st
er

he
ad

 e
ne

rg
y

 range = 250m

HEED
DECA

(a) (b)

Figure 3. Number messages (a), and residual clusterhead energy (b).

0 10 20 30 40 50
0.1

0.2

0.3

0.4

0.5

0.6

0.7

node maximum speed (m/s)

ra
tio

 o
f c

lu
st

er
s

 range = 250m

HEED
DECA

0 10 20 30 40 50
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

node maximum speed (m/s)

ra
tio

 o
f s

in
gl

e-
no

de
 c

lu
st

er
s

 range = 250m

HEED
DECA

(a) (b)

Figure 2. Ratio of clusters (a), and single-node clusters (b).

1 2 3 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
static scenario and maximum speed 0.1m/s

ra
tio

 o
f c

lu
st

er
s

an
d

si
ng

le
-n

od
e

cl
us

te
rs

total # of clusters
single-node clusters
total # of clusters(0.1ms)
single-node clusters(0.1ms)

Lin&Gerla
DECA

HEED

Krishna

Figure 1. Ratio of clusters for four protocols.

16 JOURNAL OF NETWORKS, VOL. 1, NO. 1, MAY 2006

© 2006 ACADEMY PUBLISHER

0 10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

node maximum speed (m/s)

ra
tio

 o
f c

lu
st

er
s

 DECA performance

range=150m
range=250m
range=350m
range=450m

150 200 250 300 350 400 450
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

node transmission range (m)
ra

tio
 o

f c
lu

st
er

s

 DECA performance

5 m/s
20 m/s
40 m/s

(a) (b)

Figure 4. Cluster ratio under different (a) speeds, and (b) ranges.

Next, we look at average cluster sizes. Fig. 5 shows

that for both HEED and DECA, the mean cluster sizes
obtained with different node speeds track each other quite
closely. Similar results are also obtained with respect to
the standard deviation of cluster sizes for both HEED and
DECA (not shown here). These results reveal that both
DECA and HEED are resilient against node mobility.

To observe the clustering performance, Fig. 6 shows
that DECA essentially incurs similar or a bit better
performance compared with HEED with respect to both
the mean and the standard deviation of cluster sizes.
Further, it is obvious from Fig. 6 that as the transmission
range increases, both the mean and the standard deviation
increase. The latter is typically not desirable since more
uniform clusters are generally preferred to achieve better
scalability. Hence, care must be taken to prevent large
cluster size variations.

Though Fig. 5 and Fig. 6 may suggest that DECA only
performs similarly as HEED, we will show below that, in
fact, DECA outperforms HEED significantly for every
transmission range used in the simulations. Given the
mobility resilience, we pick 10 m/s node speed as a
representative scenario. Fig. 7 illustrates the simulation
results obtained by comparing DECA and HEED.

It is obvious in Fig. 7 that DECA consistently incurs
smaller ratio of clusters and higher percentage of non-
single-node clusters for every transmission range. In
addition, it is interesting to observe that the performance
gain of DECA over HEED decreases as the transmission
range increases. This is particularly evident in Fig. 7(b).

Such phenomenon is somewhat similar to another
finding in terms of the per node protocol message. Fig. 8
shows that as the transmission range increases, while
DECA incurs only one message per node, the number of
messages sent per node in HEED consistently decreases.

150 200 250 300 350 400 450
1

2

3

4

5

6

7

8

9

10

node transmission range (m)

m
ea

n
cl

us
te

r
si

ze

 with speed 20m/s

HEED
DECA

150 200 250 300 350 400 450
0

2

4

6

8

10

node transmission range (m)

cl
us

te
r

si
ze

 s
ta

nd
ar

d
de

vi
at

io
n

 with speed 20m/s

HEED
DECA

(a) (b)

Figure 6. Cluster size comparisons: (a) mean, (b) standard deviation.

150 200 250 300 350 400 450
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

node transmission range (m)

ra
tio

 o
f c

lu
st

er
s

 DECA vs HEED with speed 10 m/s

HEED
DECA

150 200 250 300 350 400 450
0

20

40

60

80

100

node transmission range (m)

pe
rc

en
ta

ge
 o

f n
on

-s
in

gl
e-

no
de

 c
lu

st
er

s DECA vs HEED with speed 10 m/s

HEED
DECA

(a) (b)

Figure 7. Ratio of clusters (a), percent of non-single-node clusters (b).

150 200 250 300 350 400 450
0

2

4

6

8

10

node transmission range (m)

m
ea

n
cl

us
te

r
si

ze

 HEED performance

5 m/s
20 m/s
40 m/s

150 200 250 300 350 400 450
0

2

4

6

8

10

node transmission range (m)

m
ea

n
cl

u
st

er
 s

iz
e

 DECA performance

5 m/s
20 m/s
40 m/s

(a) (b)

Figure 5. Cluster ratio under different (a) speeds, and (b) ranges.

.

This observation is in accordance with how HEED

works. In HEED’s main processing phase [6], a node
sends a clusterhead announcement message when its
probability of becoming a clusterhead, , reaches 1.
Further, when the set of tentative cluster heads is
empty and

probCH

CHS
1probCH < , a node can send an announcement

message randomly based on its . Hence, when the
transmission range is small, there are fewer neighbors (or
no neighbors at all) for each node compared to the case
with a larger transmission range. As a result, the tentative
clusterhead set perceived by each node is more
likely to be empty, and each node then needs to transmit a
message according to its . This situation in turn
leads to more messages being sent (and wasted) during
HEED iterations. As the transmission range gets larger,
the set at each node tends to be non-empty, and thus
some number of random message transmissions is saved.
Thus, the performance gains of DECA over HEED in
terms of number of messages sent per node will decrease
with larger transmission range.

probCH

CHS

probCH

CHS

150 200 250 300 350 400 450
0

0.5

1

1.5

2

2.5

3

node transmission range (m)

nu
m

be
r

of
 m

es
sa

ge
s

pe
r

no
de

 DECA vs HEED with speed 5 m/s

HEED
DECA

150 200 250 300 350 400 450
0

0.5

1

1.5

2

2.5

3

node transmission range (m)

nu
m

be
r

of
 m

es
sa

ge
s

pe
r

no
de

 DECA vs HEED with speed 50 m/s

HEED
DECA

 (a) (b)

Figure 8. Number of messages with node speed (a) 5m/s and (b) 50m/s.

JOURNAL OF NETWORKS, VOL. 1, NO. 1, MAY 2006 17

© 2006 ACADEMY PUBLISHER

From Fig. 7 and Fig. 8, one may conclude that larger
transmission range is more preferable for better clustering
performance. However, it is generally undesirable to
extend a node’s transmission range in multi-hop wireless
networks due to energy and interference issues. To tackle
this trade-off, we propose the energy-conservative
approach: select the smallest transmission range that
brings about the largest performance improvement.

For example, the ratio of clusters in Fig. 4(a) drops
from about 0.55 to about 0.35 with range increases from
150m to 250m. The ratio drops only to about 0.25 if the
range increases further to 350m. As a result, it might not
be worthwhile to increase the range over around 250m.
This insight can be further validated by Fig. 4(b), where
we should choose the range with the steepest slope in the
figure, indicating the greatest improvement on the
clustering performance. Again, we need to choose the
range around 250m. Fig. 7(b) also indicates that beyond
250m transmission range, the performance of DECA
become “flat” and its gain over HEED gets smaller. This
energy-conservative approach is not only of simulation
interests, practical deployment of the DECA algorithm
should also follow such insights.

V. DISCUSSIONS

Node mobility is of great importance in multi-hop ad
hoc networks. One motivating example is related to
battlefield surveillance where communication nodes can
move and organize among themselves to form ad hoc
networks. Similar scenarios also exist in disaster relief
and search-and-rescue applications. One of the objectives
of this work is to propose a clustering protocol that is
resilient against mild to moderate mobility where each
node can potentially move.

Our simulation results reveal that both DECA and
HEED perform quite consistently under different
maximum node speed. This is not coincident: a node in
both DECA and HEED will stop trying to claim itself as
the potential clusterhead after some initial period
(delayed announcement in DECA and rounds of iterations
in HEED) and enter the finalizing phase. As a result, the
local information gathered, which serves as the base for
clustering, is essentially what can be gathered within the
(roughly invariant) initial period which leads to consistent
behaviors under different node mobility. It is this
consistency in performance that we conclude that both
DECA and HEED are resilient to node mobility.

On the other hand, DECA outperforms HEED in an
all-round manner with respect to the common clustering
performance measures. In particular, DECA only incurs
one protocol message per node, which directly implies
better energy efficiency and less wireless interference.
This is especially important in wireless sensor networks
where sensor nodes are severely resource-constrained.
Since recharging is typically not possible, energy-
efficient sensor network protocols are required for energy
conservation and prolonging network lifetime. With less
protocol message overhead, DECA can result in more
economic energy consumption than HEED.

In addition, HEED may possess another undesirable
feature in its protocol operation. Over time, the energy of
each node fades. The decrease of residual energy leads to
a uniformly smaller probability of announcement in
HEED for each node, which implies more rounds of
iterations overall. As a result, more announcements could
be sent and more energy could be consumed, which could
incur even more messages in the next round of clustering.
DECA, on the contrary, does not possess this “positive
feedback” even with energy fading, since each node only
sends one message during the operation.

It can be observed that the dispersed delay timers in
DECA assume global synchronization among nodes.
While this might not be a problem for some military ad
hoc network applications, synchronization can be rather
tricky in less-equipped sensor networks. However, we
have shown in [20] that DECA is in fact quite resilient to
synchronization errors. Further, Ref. [20] also shows that
our clustering protocol is fairly robust against wireless
packet losses.

The DECA clustering scheme provides a useful service
that can be leveraged by many different applications to
achieve scalability. For instance, in secure group
communication scenarios, the large size of the serving
group, combined with the dynamic nature of group
changes, pose a significant challenge on the scalability
and efficiency on key management research. In a
previous work [22], the scalability problem was solved by
partitioning the mobile devices into subgroups and
further organizing the subgroups into hierarchies. Key
management and actual data transmissions follow the
hierarchy. DECA algorithm was utilized to organize
mobile devices into subgroups that result in better
scalability and efficiency. Other examples include sensor
network applications that require efficient data
aggregation and prolonged network lifetime, e.g.
environmental monitoring.

VI. CONCLUSIONS

In this paper we present a distributed and efficient
clustering algorithm that works with resilience to node
mobility and at the same time leads to energy efficiency.
The algorithm terminates fast, has low computational
complexity, and generates non-overlapping clusters with
good clustering performance. Our approach is generally
applicable to most multi-hop wireless networks.

Our future work includes more extensive simulations
on large-scale wireless networks with elaborate power
models, extension to k-hop clustering, and integration
with various wireless network applications spanning from
efficient sensor network data fusion to cooperative
intrusion detection in ad hoc networks.

ACKNOWLEDGMENT

The authors gratefully acknowledge the partial support
received from the US Air Force Research Laboratory
under the contract NO. FA8750-05-C-0161.

18 JOURNAL OF NETWORKS, VOL. 1, NO. 1, MAY 2006

© 2006 ACADEMY PUBLISHER

REFERENCES
[1] A. B. McDonald and T. Znati, “A mobility-based

framework for adaptive clustering in wireless ad hoc
networks,” IEEE Journal on Selected Areas in
Communications, Special Issue on Wireless Ad Hoc
Networks, vol. 17, no. 8, pp. 1466–1487, August 1999.

[2] S. Basagni, “Distributed clustering for ad hoc networks,”
in Proceedings of the 1999 International Symposium on
Parallel Architectures, Algorithms, and Networks.

[3] S. Basagni, D. Turgut, and S. K. Das, “Mobility-adaptive
protocols for managing large ad hoc networks,” in
Proceedings of the IEEE International Conference on
Communications, ICC 2001, Helsinki, pp. 1539–1543.

[4] P. Krishna, N.N. Vaidya, M. Chatterjee and D.K. Pradhan,
“A cluster-based approach for routing in dynamic
networks”, ACM SIGCOMM Computer Communication
Review, vol. 49, pp. 49–64, 1997.

[5] C. R. Lin and M. Gerla, “Adaptive clustering for mobile
wireless networks,” Journal on Selected Areas in
Communications, vol. 15, no. 7, pp. 1265–1275, 1997.

[6] O. Younis, S. Fahmy, “HEED: A Hybrid, Energy-
Efficient, Distributed Clustering Approach for Ad Hoc
Sensor Networks”, IEEE Trans on Mobile Computing, Vol.
3, No. 4, 2004

[7] I. F. Akyildiz, W. Su, Y. Sanakarasubramaniam, and E.
Cayirci, “Wireless sensor networks: A survey,” Computer
Networks, vol. 38, no. 4, pp. 393–422, March 2002.

[8] D. J. Baker, A. Ephremides, and J. A. Flynn, “The design
and simulation of a mobile radio network with distributed
control,” IEEE Journal on Selected Areas in
Communications, vol.2, no. 1, pp. 226–237, January 1984.

[9] A. Ephremides, J. E. Wieselthier, and D. J. Baker, “A
design concept for reliable mobile radio networks with
frequency hopping signaling,” Proceedings of the IEEE,
vol. 75, no. 1, pp. 56–73, January 1987.

[10] R. Sivakumar, B. Das, and V. Bharghavan, “The clade
vertebrata: Spines and routing in ad hoc networks,” in
Proceedings of the IEEE Symposium on Computer
Communications (ISCC’98), Athens, Greece, 1998.

[11] R. Sivakumar, B. Das, and B. V., “Spine-based routing in
ad hoc networks,” ACM/Baltzer Cluster Computing
Journal, vol. 1, pp. 237–248, November 1998, special
Issue on Mobile Computing.

[12] R. Sivakumar, P. Sinha, and V. Bharghavan, “CEDAR: A
core-extraction distributed ad hoc routing algorithm,”
IEEE Journal on Selected Areas in Communications, vol.
17, no. 8, pp. 1454–1465, 1999.

[13] I. Stojmenovic, M. Seddigh, and J. Zunic, “Dominating
sets and neighbors elimination-based broadcasting
algorithms in wireless networks,” IEEE Transactions on
Parallel and Distributed Systems, vol. 13, no. 1, pp. 14–25,
January 2002.

[14] J. Wu and H. Li, “On calculating connected dominating
sets for efficient routing in ad hoc wireless networks,”
Telecommunication Systems, Special Issue on Mobile
Computing and Wireless Networks, vol. 18, no. 1/3, pp.
13–36, September 2001.

[15] P. Sinha, R. Sivakumar, and V. Bharghavan, “Enhancing
ad hoc routing with dynamic virtual infrastructures,” in
Proceedings of IEEE Infocom 2001, vol. 3, Anchorage,
AK, April 22-26 2001, pp. 1763–1762.

[16] F. Dai and J. Wu, “An extended localized algorithms for
connected dominating set formation in ad hoc wireless
networks,” IEEE Transactions on Parallel and Distributed
Systems, vol. 15, no. 10, October 2004.

[17] F. Garcia Nocetti, J. Solano Gonzales, and I. Stojmenovic,
“Connectivity based k-hop clustering in wireless
networks,” Telecommunication Systems, vol. 22, no. 1–4,
pp. 205–220, 2003.

[18] W. R. Heinzelman, A. Chandrakasan, and H. Balakrishnan,
“Energy efficient communication protocol for wireless
micro sensor networks,” in Proceedings of the 3rd Annual

Hawaii International Conference on System Sciences,
HICSS 2000, Maui, HA, January 4–7 2000, pp. 3005–3014

[19] J. H. Li, M. Yu, and R. Levy, “Distributed Efficient
Clustering Approach for Ad Hoc and Sensor Networks” in
Proc. of the First International Conference on Mobile Ad
hoc and Sensor Networks, Wuhan, China, 2005.

[20] J. H. Li, M. Yu, R. Levy, and A. Teittinen, “A Mobility-
Resistant Efficient Clustering Approach for Ad Hoc and
Sensor Networks”, in Mobile Computing and
Communications Review, 2006, in press.

[21] B. N. Clark, C. J. Colburn, and D. S. Johnson, “Unit disk
graphs,” Discrete Mathematics, vol. 86, pp. 65–167, 1990.

[22] J. H. Li, M. Yu, R. Levy, and B. Bhattacharjee, “A
Scalable Key Management and Clustering Scheme for Ad
Hoc Networks”, in Proc. InfoScale, Hong Kong, 2006

Miao Yu obtained her B.S and M.S. degrees in the field of
engineering mechanics from the Tsinghua University, Beijing,
China, in 1996 and 1998 respectively, and her Ph.D. degree in
mechanical engineering from the University of Maryland at
College Park, USA in 2002.

She has been an assistant professor in the Department of
Mechanical Engineering in the University of Maryland at
College Park since January 2005. Her research interests include
smart sensors, sensor systems for military, civil, mechanical,
electrical, biochemical, and environmental applications,
collaborative sensor signal processing, and sensor networks.

Dr. Yu is a member of the OSA, SPIE, ASME, ASEE, and
SEM. Her awards include the Invention of the Year Award from
the University of Maryland in 2002.

Jason H. Li received his B.E. and M.S. degrees in Electrical
Engineering from the Tsinghua University, Beijing, China in
1993 and 1996 respectively, and his Ph.D. degree in Electrical
and Computer Engineering, from the University of Maryland at
College Park, USA in 2002 majoring in computer
communication networks.

He is currently a senior research scientist at Intelligent
Automation, Inc., Rockville, MD, USA. Prior to that, he was a
senior research scientist in Hughes Network Systems. His
research interests lie in the general area of computer
communication networks, including network protocols, network
security, network management and control, and distributed
software agents.

Dr. Li is a member of the IEEE.

Renato Levy received his BSEE degree in electrical
engineering from the Federal University of Rio de Janeiro,
Brazil in 1986, his MBA degree from Institute for Business and
market economy, Brazil in 1992, and his D.Sc. degree in
computer science from the George Washington University,
USA in 2004.

He is currently a principal scientist at Intelligent Automation,
Inc., Rockville, MD, USA. His research interests include
distributed systems, embedded systems, modeling and
simulation, software engineering, and wireless networks.

Dr. Levy is a member of the IEEE and ACM.

JOURNAL OF NETWORKS, VOL. 1, NO. 1, MAY 2006 19

© 2006 ACADEMY PUBLISHER

