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Abstract—This paper presents a Distributed Efficient 
Clustering Approach (DECA) for mobility-resistant and 
energy-efficient clustering in multi-hop wireless networks. 
The clusterheads cover the whole network and each node in 
the network can exclusively determine the single cluster it 
belongs. DECA is fully distributed, each node transmits only 
one message during clustering operation, and the algorithm 
terminates in deterministic time without iterations. 
Theoretical results show the correctness of DECA, and 
extensive simulation results demonstrate that DECA is 
energy-efficient and robust against node mobility.  
 
Index Terms—clustering, ad hoc networks, wireless sensor 
networks, mobility, performance evaluation 
 

I.  INTRODUCTION 

Multi-hop ad hoc networks provide a flexible means of 
communication when there is no infrastructure or the 
existing infrastructure is inconvenient or expensive to 
use. Without a fixed infrastructure, routing paths consist 
of wireless links whose endpoints are likely to be moving 
independently of one another. Consequently, mobile end 
systems in an ad hoc network are expected to act 
cooperatively to route traffic and adapt the network to the 
dynamic state of its links and mobility patterns. Unlike 
infrastructure networks where link failures are relatively 
rare events, the rate of link failure due to node mobility is 
the primary obstacle to routing in ad hoc networks [1]. 

With the potentially large number of mobile devices in 
such networks, scalability becomes a critical issue. 
Among the solutions proposed for scaling down networks 
with a large number of nodes, network clustering is 
among the most investigated. The basic idea is to group 
network nodes that are in physical proximity and thereby 
logically organize the network into groups with smaller 
sizes, and hence simpler to manage.   

Clustering protocols have been investigated 
extensively for multi-hop wireless networks in the 
literature [2]-[6]. While these strategies differ in the 
criteria used to organize the clusters, clustering decisions 
in these schemes are based on static views of the 
network; none of these schemes, even equipped with 
local maintenance remedies, is satisfactorily resistant to 
node mobility beyond rare and trivial node movements.  

Another important category of multi-hop wireless 
networks is called wireless sensor networks [7], which 
comprise of a larger number of nodes (in thousands and 
more) scattered over some region. Sensor nodes are 
typically less mobile, and more densely deployed than ad 
hoc networks. The sensor nodes gather data from the 
environment and they can perform various kinds of 
activities including collaborative processing of sensor 
data and performing some synchronized actions based on 
the gathered sensor data. Typically, sensor nodes are 
heavily resource-constrained (especially on power), 
irreplaceable, and become unusable after failure or 
energy depletion. It is thus crucial to devise novel energy-
efficient solutions for topology organization and routing 
that are scalable, efficient and energy conserving in order 
to increase the overall network longevity.   

Clustering techniques can facilitate in reducing energy 
consumption. Network lifetime can be prolonged through 
reducing the number of nodes contending for channel 
access, summarizing information at the clusterheads, and 
routing through an overlay among clusterheads, which 
has a relatively small network diameter. In this article, we 
present a distributed, efficient clustering approach 
(DECA) that outperforms the state-of-the-art in terms of 
energy efficiency and possesses the advantages of better 
clustering overhead and resilience against node mobility.  

The remainder of this paper is organized as follows. 
Section II describes the related work, followed by the 
revisit of the DECA protocol in Section III. Performance 
evaluation is presented in Section IV, and various issues 
and application scenarios are discussed in Section V. The 
paper is concluded in Section VI.  

Based on “A Distributed Efficient Clustering Approach for Ad Hoc
and Sensor Networks”, by J. H. Li, M. Yu, and R. Levy, which 
appeared in the Proceedings of the first International Conference on
Mobile Ad Hoc and Sensor Networks, Wuhan, China, December 2005. 
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II. RELATED WORK  

Clustering algorithms have been investigated for ad 
hoc networks since their appearance. The first solutions 
[8][9] aimed at partitioning the nodes into clusters, each 
with a clusterhead and some ordinary nodes, so that the 
clusterheads form an independent set, i.e., a set whose 
nodes are never neighbors among themselves. In general, 
the sizes of the constructed clusters should not be very 
small so that the efforts for clustering and creating 
network hierarchies can justify. 

Among scalable routing mechanisms in multi-hop 
wireless networks, dominating set based clustering [10]-
[14] serves as one of the most promising approaches. A 
subset of vertices in an undirected graph is a dominating 
set if every vertex not in the subset is adjacent to at least 
one vertex in the subset. Moreover, this dominating set 
should be connected for ease of routing within the 
induced graph of dominating vertices. The main 
advantage of dominating set based routing is that it 
simplifies the routing problem to a smaller subnetwork 
generated from the connected dominating set.  

Using the idea of the connected dominating set (CDS), 
Krishna et al. [4] proposed to dynamically organize the 
network topology into clusters for routing. A k-cluster is 
defined as a subset of nodes that are mutually “reachable” 
by a path length of at most k for some fixed k. A k-cluster 
with k = 1 is a clique. During the cluster formation, the 
network is viewed as a dynamically growing system, and 
each node needs information of the entire network 
topology. As a result, for “large” networks, the amount of 
information to be updated at each mobile node is 
significant, which imposes much overhead on the 
communication bandwidth. For mobile ad hoc networks, 
clique formation usually results in small clusters, unless 
the network is really dense.  

Sivakumar et al. [10]-[12][15] proposed a series of 2-
level hierarchical routing algorithms for ad hoc wireless 
networks. The idea is to identify a subnetwork that forms 
a minimum connected dominating set (MCDS). Each 
node in the subnetwork is called a spine node and keeps a 
routing table that captures the topological structure of the 
whole network. In this approach, a connected dominating 
set is found by growing a tree T starting from a vertex 
with the maximum node degree. Then, a vertex v in T 
that has the maximum number of neighbors not in T is 
selected. Finally, a spanning tree is constructed and non-
leaf nodes form a connected dominating set. The main 
drawback of this algorithm is that it still needs a non-
constant number of rounds to determine a connected 
dominating set [14]. 

Wu et al. [14][16] proposed a series of simple and 
efficient localized algorithms that can quickly build a 
backbone directly in ad hoc networks. This approach uses 
a localized algorithm called the marking process where 
hosts interact with others in restricted vicinity. The 
resultant dominating set derived from the marking 
process is further reduced by applying two pruning rules. 
The low complexity of such algorithms translates into 
low communication and computation cost; but the 
algorithms tend to create large CDSs.  

Instead of constructing connected dominating sets, Lin 
and Gerla [5] used node ID numbers to build clusters of 
nodes that are reachable by two-hop paths. The 
distributed clustering algorithm is initiated by all nodes 
that have the lowest ID numbers among their neighbors. 
The cluster initiators broadcast their decision to all their 
neighbors. If all the lower ID neighbors sent their 
decisions and none declared itself as a cluster initiator, 
the node decides to create its own cluster and broadcasts 
its own ID as the cluster ID. Otherwise, it chooses a 
neighboring cluster with the lowest ID, and broadcasts 
such decision. Ref. [17] generalizes the cluster definition 
so that a cluster contains all nodes that are at distance at 
most k hops from the initiator.  

Similar to [5], Basagni [2] proposed to use nodes’ 
weights instead of the lowest ID or node degrees in 
clusterhead decisions. Weight is defined by mobility 
related parameters, such as speed. Ref. [3] further 
generalized the scheme by allowing each clusterhead to 
have at most k neighboring clusterheads and described an 
algorithm of finding a maximal weighted independent set 
in wireless networks.  

In [6], a hybrid energy-efficient distributed (HEED) 
clustering protocol was presented for ad hoc sensor 
networks. HEED utilizes node residual energy as the first 
criterion and takes a cost function as the second criterion 
to compute the score. Each node probabilistically 
propagates tentative or final clusterhead announcements 
depending on its probability and connectivity. The 
clustering process entails a number of rounds of 
iterations, and the execution of the protocol at each node 
will terminate when the probability of self-election, 
which is doubled in every iteration, reaches 1. It has been 
shown that HEED outperforms generic clustering 
protocols on various aspects.  

One of the first protocols that use clustering for 
extending network lifetime was the Low-Energy 
Adaptive Clustering Hierarchy (LEACH) [18].  In 
LEACH, a node elects to become a clusterhead randomly 
according to a target number of clusterheads in the 
network and its own residual energy. Energy load gets 
evenly distributed among the sensors in the network.  
LEACH clustering proved to be 4 to 8 times more 
effective in extending the network lifetime than direct 
communication or minimum energy transfer (shortest 
path routing). A limitation of this scheme is that it 
requires all current clusterheads to be able to transmit 
directly to the sink. Improvements to the basic LEACH 
algorithms include multi-layer LEACH-based clustering 
and the optimal determination of the number of 
clusterheads that minimizes the energy consumption 
throughout the network.  

None of the above algorithms intends to handle the 
scenarios that all the nodes in the network can potentially 
move. DECA protocol tackles such problems. The initial 
idea was proposed in Ref. [19], and a subsequent study 
focused on clustering performance with lossy wireless 
channels and synchronization errors [20]. This article 
enriches DECA protocol with more extensive results and 
insights under different node transmission ranges.    
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III.  DECA CLUSTERING ALGORITHM 

A.  Problem Statement  
An ad hoc wireless network is modeled as a set V of 

nodes that are interconnected by a set  of full-duplex 
communication links. Each node has a unique identifier 
and has at least one transmitter and one receiver. Two 
nodes are neighbors and have a link between them if they 
are in the transmission range of each other [21]. 
Neighboring nodes share the same wireless media, and 
each message is transmitted through a local broadcast.  

E

Nodes within an ad hoc network may move at any time 
without notice, but it is assumed that the node speed is 
moderate with respect to the packet transmission latency 
and the transmission range of the particular underlying 
network hardware. Nodes may join, leave, and rejoin an 
ad hoc network at any time, existing links may disappear, 
and new links may be formed as the nodes move.   

Let the clustering duration  be the time interval 
taken by the clustering protocol to cluster the network. 
Let the network operation interval  be the time needed 
to execute the intended tasks. In many applications 

, which implies that the formed clusters need to 
be maintained during the operation period in order to reap 
the advantage of clustering. In general, nodes that travel 
rapidly in the network may degrade the cluster quality 
because they alter the node distribution in their clusters 
and make the clusters unstable, possibly long before the 
end of . However,  research on clustering should not 
be restricted only within the arena of static or quasi-
stationary networks where node movements are rare and 
slow—some local maintenance mechanisms suffice to 
tackle such problems [5][14]. Rather, for applications 
where  is not much longer than , it is proposed in 
this work an efficient protocol that can generate descent 
clusters under mild to moderate node mobility.   

CT

OT

CO TT >>

OT

OT CT

The problem of clustering is then defined as follows. 
For a multi-hop wireless network with node set V , the 
goal is to identify a set of clusterheads that cover the 
whole network. Each and every node v  in set V must be 
mapped into exactly one cluster, and each ordinary node 
in the cluster must be able to directly communicate to its 
clusterhead. The clustering protocol must be completely 
distributed, that is, each node independently makes its 
decisions based only on local information. Further, the 
clustering must terminate fast and execute efficiently in 
terms of processing complexity and message exchange. 
Finally, the clustering algorithm must be resistant to 
moderate mobility in ad hoc networks and at the same 
time renders energy-efficiency. 

B.  Overview of DECA 
The DECA algorithm structure is somewhat similar to 

that presented in [5] and the HEED protocol [6] in that 
each node broadcasts its decision as the clusterhead in the 
neighborhood based on some local information and score 
function. The difference between DECA and these two 
protocols lies in when and how the nodes make such 
decisions and how the score gets computed.  

In [5] the score is computed based on node identifiers, 
and each node holds its message transmission until all its 
neighbors with lower IDs have done so. Each node stops 
its protocol execution if it knows that every node in its 
neighborhood has transmitted. It is assumed that the 
network topology does not change during the algorithm 
execution, and it is thus valid for each node to wait until 
it overhears every higher-scored neighbor transmitting. 
With some node mobility, however, this algorithm can 
halt since it is quite possible that an initial neighboring 
node leaves the transmission range for a node, say v , so 
that  cannot overhear its transmission.  Node v  then 
has to wait endlessly according to the stopping rule.  

v

HEED also assumes static network topology so that 
each node can experience rounds of iterations of tentative 
or final clusterhead announcement before entering the 
finalizing phase to choose its cluster. Under node 
mobility, HEED will not halt. However, we observe that 
the iterations are not necessary and can potentially harm 
the clustering performance due to the possibly excessive 
number of announcements during iterations.  

 But Ref. [5] does provide important insights on how 
distributed clustering should be performed among 
neighboring nodes: those nodes with better scores should 
announce themselves earlier. We adopt this idea in 
DECA—actually many clustering protocols use ideas 
similar to this [2][3][9]—and we utilize a score function 
that captures node residual energy, connectivity and 
identifier. Each node does not need to hold its 
announcement until its better-scored neighbors have done 
so; each node simply calculates a normalized delay based 
on its score and transmits according to the computed 
delay. Each node does not need to overhear every 
neighbor in order to stop; rather, each node can terminate 
its execution in a pre-determined time, estimated based 
on its computing capability and node mobility. Further, 
each node only transmits one message, rather than going 
through rounds of iterations of probabilistic message 
announcement. Given the fact that it is communication 
that consumes far more energy in sensor nodes compared 
with sensing and computation, such savings on message 
transmission lead to better energy efficiency. 

C.  DECA Operation 
Each node periodically transmits a Hello message to 

identify itself, and based on such Hello messages, each 
node maintains a neighbor list. Define for each node the 
score function as 1 2 3score w E w C w I= + + , where  
stands for the node residual energy, C  stands for the 
node connectivity, 

E

I  stands for the node identifier, and 
the weights follow . The computed score is 
then used to compute the delay for this node to announce 
itself as the clusterhead. The higher the score, the sooner 
the node will transmit. The computed delay is normalized 
between 0 and a certain upper bound , which is a 
key parameter that needs to be carefully selected, like the 
DIFS parameter in IEEE 802.11. After the clustering 
starts, the procedure will terminate after time , 
another key parameter whose selection needs to take the 

3

1
1ii

w
=

=∑

maxD

stopT
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node computation capability and mobility into 
consideration. In the simulation, we choose  
between  and 

maxD
10 ms 50 ms− stopT  between 1s 2 s− , and 

the protocol works well.  

1 2 3

I  StartClusteringAlgorithm()
  1   myScore
  2   delay (1000 myScore) 100
  3   (delay 0)
  4             broadcastCluster(myId,myCid,myScore);
  5      delayAnnouncement ();
  6   Sc

w E w C w I
.

= + + ;

= − / ;
< if

else 
hedule clustering termination.

 

II. ReceiveClusteringmessage (id,cid,score)
  1    (id==cid)
  2           (myCid==NULL)
  3                   (score>myScore)
  4                         myCid=cid;
  5                   (scor

if
if

if

elseif e>myScore)
  6                           (myId==myCid)
  7                                    needConvert = true;
  8                              markBestCluster();   

if

else

 

III. ActualAnnouncement ()
  1    broadcastCluster (myId, myCid, score);  

 

IV. FinalizeClusteringAlgorithm ()
  1    (needConvert)
  2           (!amIHeadforAnyOtherNode ())
  3                 convertToNewCluster (); 
  4    (myCid == NULL) 
  5           myCid = cid;
  6  

if
if

if

         broadcastCluster (myId, myCid, score);

 

The distributed clustering algorithm at each node is 
illustrated in the pseudo code. Essentially, clustering is 
done periodically and at each clustering epoch, each node 
either immediately announces itself as a potential 
clusterhead or it holds for some delay time.  

Upon receiving clustering messages, a node first 
checks whether the node ID and the cluster ID embedded 
in the received message are the same; same node and 
cluster ID means that the message has been transmitted 
from a clusterhead. Further, if the receiving node does not 
belong to any cluster, and the received score is better than 
its own, the node will mark down the advertised cluster 
and wait until its scheduled time to send its message.  

If the receiving node currently belongs to some cluster, 
and the received score is better than its own score, two 
cases are further considered. First, if the current node 
receiving a better-scored message is not a clusterhead 
itself, as an ordinary node, it can immediately mark down 
the best cluster so far (line 8 in II) and wait until its 
scheduled announcement. This node will stay in its 
committed cluster after its announcement. On the other 
hand, if the current node is a clusterhead itself, receiving 
a better scored message (due to variant delays and/or 
synchronization drifts) means that this node may need to 
switch to the better cluster. However, cautions need to be 
taken here before switching since the current node, as a 
clusterhead, may already have other nodes affiliated with 
it. Therefore, inconsistencies can occur if it rushes to 
switch to another cluster. In our approach, we simply 
mark the necessity for switching (line 7 in II) and defer it 
to the finalizing phase, where it checks to make sure that 
no other nodes are affiliated with this node in the cluster 
as the head, before switching can occur. It is noted that 
the switch process mandates that a node needs to leave a 
cluster first before joining a new cluster. Further, it is 
important to point out that since each node announces 
itself according to the computed score, this second case is 
really the exception, rather than the normal case. We 
include such exception handling for better robustness.  

In the finalizing phase, where each node is forced to 
enter after stopT , each node checks to see if it needs to 
convert. Further, each node checks if it already belongs to 
a cluster and will initiate a new cluster with itself as the 
head if not so. 

D.  Correctness and Complexity 
The DECA protocol described above is completely 

distributed. To show the correctness and efficiency of the 
algorithm, the following theoretical results have been 
presented in our previous study [20].  

Theorem 1. Eventually DECA terminates. 

Theorem 2. At the end of Phase III, every node can 
determine its cluster and only one cluster. 

Theorem 3. When clustering finishes, any two nodes in 
a cluster are at most two-hops away.  

Theorem 4. In DECA, each node transmits only one 
message during the operation.   

Theorem 5. The time complexity of DECA is .  |)(|VO

IV.  PERFORMANCE EVALUATION 

In this section, we use an in-house simulation tool 
called agent-based ad-hoc network simulator (NetSim) to 
implement our protocol and the algorithms proposed by 
Krishna et al. [4], Lin and Gerla [5], and HEED [6] for 
comparisons. Compared with other network simulators 
(for instance ns-2), the most important feature of NetSim 
is its capability of handling massive ad-hoc wireless 
networks and sensor networks.  

In our simulations, random graphs are generated so 
that nodes are randomly dispersed in a 1000m× 1000m 
region. All nodes have the same transmission radius, 
which ranges from 150m to 450m with an increment of 
50m. To study mobility resistance, the transmission range 
is set to 250m, and we investigate the clustering 
performance under different node speed ranges. In 
particular, we simulate the following scenarios with 
maximum node speed set as 0, 0.1, 1, 5, 10, 20, 30, 40, 
and 50 m/s. For each speed, each node takes the same 
maximum speed and a large number of random graphs 
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are generated. Simulations are run and results are 
averaged over these random graphs.  

In general, for any clustering protocol, it is undesirable 
to create single-node clusters. Single-node clusters arise 
when a node is forced to represent itself (because of not 
receiving any clusterhead messages). A cluster may also 
contain a single node if this node decides to act as a 
clusterhead and all its neighbors register themselves with 
other clusterheads. While other clustering algorithms 
typically generate lots of single-node clusters as node 
mobility gets more aggressive, our algorithm shows much 
better resilience in such situations.  

We have considered the following metrics for 
performance comparisons: 1) the average overhead (in 
number of protocol messages); 2) the ratio of the number 
of clusters to the total number of nodes in the network; 3) 
the ratio of the number of single-node clusters to the total 
number of nodes in the network; and 4) the average 
residual energy of the clusterheads. 

 We first look at static scenarios where nodes do not 
move and the quasi-stationary scenarios where the 
maximum node speed is bounded at 0.1m/s. We choose 
Ref. [5] (referred to as LIN) as a representative for those 
general clustering protocols [2][3], and choose Ref. [4]  
(KRISHNA) to represent dominating-set based clustering 
protocols [10]-[14]. For the state-of-the-art, we choose 
HEED [6] to compare with DECA.  

From Fig. 1 it is easy to observe that KRISHNA has 
the worst clustering performance with respect to cluster 
ratios, while DECA and LIN have the best performance. 
HEED performs in between. In addition, all four 
protocols perform quite consistently under (very) mild 
node mobility (i.e., 0.1m/s maximum speed).  

During our simulations, both LIN and KRISHNA fail 
to generate clusters as the node speed increases. This is 
expected. In LIN, the algorithm will not terminate if a 
node does not receive a message from each of its 
neighbors. Node mobility can make the holding node wait 
forever. In KRISHNA, in order to compute clusters, each 
node needs accurate information of the entire network 
topology, which by itself is extremely vulnerable to node 
mobility. In contrast, we found that both HEED and 
DECA are quite resilient to node mobility in that they can 
generate decent clusters even when each node can 
potentially move independently of others. The following 
figures compare the performance of DECA and HEED 
under different node mobility. 

 

 

Fig. 2 shows the ratio of the number of clusters and 
single-node clusters to the total number of nodes in the 
network. All nodes have the same transmission range of 
250m. In both cases, DECA significantly outperforms 
HEED, with performance gains around 40% in Fig. 2(a) 
and 200% in Fig. 2(b). 

Fig. 3(a) shows that for DECA, the number of protocol 
messages for clustering remains one per node, regardless 
of the node speed, as proven in Theorem 4. For HEED, 
the number of protocol messages is roughly 1.7−2 for 
every node speed. The fact that HEED incurs more 
message transmissions is due to the possibly many rounds 
of iterations, where each node in every iteration can 
potentially send a message to claim itself as the candidate 
clusterhead [6].  

Fig. 3(b) compares DECA and HEED with respect to 
the (normalized) average clusterhead energy. Again, 
DECA outperforms HEED with about twice the 
clusterhead residual energy. This is in accordance with 
Fig. 3(a) where DECA consistently incurs fewer message 
transmissions than HEED. Reducing the number of 
transmissions is of great importance, especially in sensor 
networks, since it would render better energy efficiency 
and fewer packet collisions, e.g. in IEEE 802.11 MAC. 

We extend our simulations to investigate how DECA 
and HEED perform under different node speeds and 
transmission ranges. Fig. 4(a) shows that DECA performs 
quite consistently in terms of cluster ratio under various 
node speeds, and the larger the transmission range, the 
lower the cluster ratio (as expected). Such observations 
can also be made in Fig. 4(b), where the cluster ratio 
curves under different node speeds track each other quite 
closely, and the ratio of clusters decreases as the 
transmission range increases. Similar observations have 
also been made for HEED (figures not shown). 
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Figure 3.  Number messages (a), and residual clusterhead energy (b).
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Figure 2.  Ratio of clusters (a), and single-node clusters (b). 
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Figure 1.  Ratio of clusters for four protocols. 
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Figure 4.  Cluster ratio under different (a) speeds, and (b) ranges. 

 
Next, we look at average cluster sizes. Fig. 5 shows 

that for both HEED and DECA, the mean cluster sizes 
obtained with different node speeds track each other quite 
closely. Similar results are also obtained with respect to 
the standard deviation of cluster sizes for both HEED and 
DECA (not shown here). These results reveal that both 
DECA and HEED are resilient against node mobility.  

To observe the clustering performance, Fig. 6 shows 
that DECA essentially incurs similar or a bit better 
performance compared with HEED with respect to both 
the mean and the standard deviation of cluster sizes. 
Further, it is obvious from Fig. 6 that as the transmission 
range increases, both the mean and the standard deviation 
increase. The latter is typically not desirable since more 
uniform clusters are generally preferred to achieve better 
scalability. Hence, care must be taken to prevent large 
cluster size variations. 

Though Fig. 5 and Fig. 6 may suggest that DECA only 
performs similarly as HEED, we will show below that, in 
fact, DECA outperforms HEED significantly for every 
transmission range used in the simulations. Given the 
mobility resilience, we pick 10 m/s node speed as a 
representative scenario.  Fig. 7 illustrates the simulation 
results obtained by comparing DECA and HEED.  

It is obvious in Fig. 7 that DECA consistently incurs 
smaller ratio of clusters and higher percentage of non-
single-node clusters for every transmission range. In 
addition, it is interesting to observe that the performance 
gain of DECA over HEED decreases as the transmission 
range increases. This is particularly evident in Fig. 7(b). 

Such phenomenon is somewhat similar to another 
finding in terms of the per node protocol message. Fig. 8 
shows that as the transmission range increases, while 
DECA incurs only one message per node, the number of 
messages sent per node in HEED consistently decreases. 
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Figure 6.  Cluster size comparisons: (a) mean, (b) standard deviation. 
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Figure 7. Ratio of clusters (a), percent of non-single-node clusters (b). 
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Figure 5.  Cluster ratio under different (a) speeds, and (b) ranges. 
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This observation is in accordance with how HEED 

works. In HEED’s main processing phase [6], a node 
sends a clusterhead announcement message when its 
probability of becoming a clusterhead, , reaches 1. 
Further, when the set of tentative cluster heads  is 
empty and 

probCH

CHS
1probCH < , a node can send an announcement 

message randomly based on its . Hence, when the 
transmission range is small, there are fewer neighbors (or 
no neighbors at all) for each node compared to the case 
with a larger transmission range. As a result, the tentative 
clusterhead set  perceived by each node is more 
likely to be empty, and each node then needs to transmit a 
message according to its . This situation in turn 
leads to more messages being sent (and wasted) during 
HEED iterations. As the transmission range gets larger, 
the set  at each node tends to be non-empty, and thus 
some number of random message transmissions is saved. 
Thus, the performance gains of DECA over HEED in 
terms of number of messages sent per node will decrease 
with larger transmission range.   
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Figure 8.  Number of messages with node speed (a) 5m/s and (b) 50m/s.
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From Fig. 7 and Fig. 8, one may conclude that larger 
transmission range is more preferable for better clustering 
performance. However, it is generally undesirable to 
extend a node’s transmission range in multi-hop wireless 
networks due to energy and interference issues. To tackle 
this trade-off, we propose the energy-conservative 
approach: select the smallest transmission range that 
brings about the largest performance improvement.  

For example, the ratio of clusters in Fig. 4(a) drops 
from about 0.55 to about 0.35 with range increases from 
150m to 250m. The ratio drops only to about 0.25 if the 
range increases further to 350m. As a result, it might not 
be worthwhile to increase the range over around 250m. 
This insight can be further validated by Fig. 4(b), where 
we should choose the range with the steepest slope in the 
figure, indicating the greatest improvement on the 
clustering performance. Again, we need to choose the 
range around 250m. Fig. 7(b) also indicates that beyond 
250m transmission range, the performance of DECA 
become “flat” and its gain over HEED gets smaller. This 
energy-conservative approach is not only of simulation 
interests, practical deployment of the DECA algorithm 
should also follow such insights. 

V. DISCUSSIONS 

Node mobility is of great importance in multi-hop ad 
hoc networks. One motivating example is related to 
battlefield surveillance where communication nodes can 
move and organize among themselves to form ad hoc 
networks. Similar scenarios also exist in disaster relief 
and search-and-rescue applications. One of the objectives 
of this work is to propose a clustering protocol that is 
resilient against mild to moderate mobility where each 
node can potentially move.  

Our simulation results reveal that both DECA and 
HEED perform quite consistently under different 
maximum node speed. This is not coincident: a node in 
both DECA and HEED will stop trying to claim itself as 
the potential clusterhead after some initial period 
(delayed announcement in DECA and rounds of iterations 
in HEED) and enter the finalizing phase. As a result, the 
local information gathered, which serves as the base for 
clustering, is essentially what can be gathered within the 
(roughly invariant) initial period which leads to consistent 
behaviors under different node mobility. It is this 
consistency in performance that we conclude that both 
DECA and HEED are resilient to node mobility.  

On the other hand, DECA outperforms HEED in an 
all-round manner with respect to the common clustering 
performance measures. In particular, DECA only incurs 
one protocol message per node, which directly implies 
better energy efficiency and less wireless interference. 
This is especially important in wireless sensor networks 
where sensor nodes are severely resource-constrained. 
Since recharging is typically not possible, energy-
efficient sensor network protocols are required for energy 
conservation and prolonging network lifetime. With less 
protocol message overhead, DECA can result in more 
economic energy consumption than HEED.  

In addition, HEED may possess another undesirable 
feature in its protocol operation. Over time, the energy of 
each node fades. The decrease of residual energy leads to 
a uniformly smaller probability of announcement in 
HEED for each node, which implies more rounds of 
iterations overall. As a result, more announcements could 
be sent and more energy could be consumed, which could 
incur even more messages in the next round of clustering. 
DECA, on the contrary, does not possess this “positive 
feedback” even with energy fading, since each node only 
sends one message during the operation.  

It can be observed that the dispersed delay timers in 
DECA assume global synchronization among nodes. 
While this might not be a problem for some military ad 
hoc network applications, synchronization can be rather 
tricky in less-equipped sensor networks. However, we 
have shown in [20] that DECA is in fact quite resilient to 
synchronization errors. Further, Ref. [20] also shows that 
our clustering protocol is fairly robust against wireless 
packet losses.  

The DECA clustering scheme provides a useful service 
that can be leveraged by many different applications to 
achieve scalability. For instance, in secure group 
communication scenarios, the large size of the serving 
group, combined with the dynamic nature of group 
changes, pose a significant challenge on the scalability 
and efficiency on key management research. In a 
previous work [22], the scalability problem was solved by 
partitioning the mobile devices into subgroups and 
further organizing the subgroups into hierarchies. Key 
management and actual data transmissions follow the 
hierarchy. DECA algorithm was utilized to organize 
mobile devices into subgroups that result in better 
scalability and efficiency. Other examples include sensor 
network applications that require efficient data 
aggregation and prolonged network lifetime, e.g. 
environmental monitoring.  

VI.  CONCLUSIONS 

In this paper we present a distributed and efficient 
clustering algorithm that works with resilience to node 
mobility and at the same time leads to energy efficiency. 
The algorithm terminates fast, has low computational 
complexity, and generates non-overlapping clusters with 
good clustering performance. Our approach is generally 
applicable to most multi-hop wireless networks.  

Our future work includes more extensive simulations 
on large-scale wireless networks with elaborate power 
models, extension to k-hop clustering, and integration 
with various wireless network applications spanning from 
efficient sensor network data fusion to cooperative 
intrusion detection in ad hoc networks.  

ACKNOWLEDGMENT 

The authors gratefully acknowledge the partial support 
received from the US Air Force Research Laboratory 
under the contract NO. FA8750-05-C-0161. 

 

18 JOURNAL OF NETWORKS, VOL. 1, NO. 1, MAY 2006

© 2006 ACADEMY PUBLISHER



REFERENCES 
[1] A. B. McDonald and T. Znati, “A mobility-based 

framework for adaptive clustering in wireless ad hoc 
networks,” IEEE Journal on Selected Areas in 
Communications, Special Issue on Wireless Ad Hoc 
Networks, vol. 17, no. 8, pp. 1466–1487, August 1999. 

[2] S. Basagni, “Distributed clustering for ad hoc networks,” 
in Proceedings of the 1999 International Symposium on 
Parallel Architectures, Algorithms, and Networks. 

[3] S. Basagni, D. Turgut, and S. K. Das, “Mobility-adaptive 
protocols for managing large ad hoc networks,” in 
Proceedings of the IEEE International Conference on 
Communications, ICC 2001, Helsinki, pp. 1539–1543. 

[4] P. Krishna, N.N. Vaidya, M. Chatterjee and D.K. Pradhan, 
“A cluster-based approach for routing in dynamic 
networks”, ACM SIGCOMM Computer Communication 
Review, vol. 49, pp. 49–64, 1997.  

[5] C. R. Lin and M. Gerla, “Adaptive clustering for mobile 
wireless networks,” Journal on Selected Areas in 
Communications, vol. 15, no. 7, pp. 1265–1275, 1997. 

[6] O. Younis, S. Fahmy, “HEED: A Hybrid, Energy-
Efficient, Distributed Clustering Approach for Ad Hoc 
Sensor Networks”, IEEE Trans on Mobile Computing, Vol. 
3, No. 4, 2004 

[7] I. F. Akyildiz, W. Su, Y. Sanakarasubramaniam, and E. 
Cayirci, “Wireless sensor networks: A survey,” Computer 
Networks, vol. 38, no. 4, pp. 393–422, March 2002. 

[8] D. J. Baker, A. Ephremides, and J. A. Flynn, “The design 
and simulation of a mobile radio network with distributed 
control,” IEEE Journal on Selected Areas in 
Communications, vol.2, no. 1, pp. 226–237, January 1984.  

[9] A. Ephremides, J. E. Wieselthier, and D. J. Baker, “A 
design concept for reliable mobile radio networks with 
frequency hopping signaling,” Proceedings of the IEEE, 
vol. 75, no. 1, pp. 56–73, January 1987. 

[10] R. Sivakumar, B. Das, and V. Bharghavan, “The clade 
vertebrata: Spines and routing in ad hoc networks,” in 
Proceedings of the IEEE Symposium on Computer 
Communications (ISCC’98), Athens, Greece, 1998. 

[11] R. Sivakumar, B. Das, and B. V., “Spine-based routing in 
ad hoc networks,” ACM/Baltzer Cluster Computing 
Journal, vol. 1, pp. 237–248, November 1998, special 
Issue on Mobile Computing. 

[12] R. Sivakumar, P. Sinha, and V. Bharghavan, “CEDAR: A 
core-extraction distributed ad hoc routing algorithm,” 
IEEE Journal on Selected Areas in Communications, vol. 
17, no. 8, pp. 1454–1465, 1999. 

[13] I. Stojmenovic, M. Seddigh, and J. Zunic, “Dominating 
sets and neighbors elimination-based broadcasting 
algorithms in wireless networks,” IEEE Transactions on 
Parallel and Distributed Systems, vol. 13, no. 1, pp. 14–25, 
January 2002. 

[14] J. Wu and H. Li, “On calculating connected dominating 
sets for efficient routing in ad hoc wireless networks,” 
Telecommunication Systems, Special Issue on Mobile 
Computing and Wireless Networks, vol. 18, no. 1/3, pp. 
13–36, September 2001. 

[15] P. Sinha, R. Sivakumar, and V. Bharghavan, “Enhancing 
ad hoc routing with dynamic virtual infrastructures,” in 
Proceedings of IEEE Infocom 2001, vol. 3, Anchorage, 
AK, April 22-26 2001, pp. 1763–1762. 

[16] F. Dai and J. Wu, “An extended localized algorithms for 
connected dominating set formation in ad hoc wireless 
networks,” IEEE Transactions on Parallel and Distributed 
Systems, vol. 15, no. 10, October 2004. 

[17] F. Garcia Nocetti, J. Solano Gonzales, and I. Stojmenovic, 
“Connectivity based k-hop clustering in wireless 
networks,” Telecommunication Systems, vol. 22, no. 1–4, 
pp. 205–220, 2003. 

[18] W. R. Heinzelman, A. Chandrakasan, and H. Balakrishnan, 
“Energy efficient communication protocol for wireless 
micro sensor networks,” in Proceedings of the 3rd Annual 

Hawaii International Conference on System Sciences, 
HICSS 2000, Maui, HA, January 4–7 2000, pp. 3005–3014  

[19] J. H. Li, M. Yu, and R. Levy, “Distributed Efficient 
Clustering Approach for Ad Hoc and Sensor Networks” in 
Proc. of the First International Conference on Mobile Ad 
hoc and Sensor Networks, Wuhan, China, 2005. 

[20] J. H. Li, M. Yu, R. Levy, and A. Teittinen, “A Mobility-
Resistant Efficient Clustering Approach for Ad Hoc and 
Sensor Networks”, in Mobile Computing and 
Communications Review, 2006, in press. 

[21] B. N. Clark, C. J. Colburn, and D. S. Johnson, “Unit disk 
graphs,” Discrete Mathematics, vol. 86, pp. 65–167, 1990. 

[22] J. H. Li, M. Yu, R. Levy, and B. Bhattacharjee, “A 
Scalable Key Management and Clustering Scheme for Ad 
Hoc Networks”, in Proc. InfoScale, Hong Kong, 2006 

 
 
 
 
 

Miao Yu obtained her B.S and M.S. degrees in the field of 
engineering mechanics from the Tsinghua University, Beijing, 
China, in 1996 and 1998 respectively, and her Ph.D. degree in 
mechanical engineering from the University of Maryland at 
College Park, USA in 2002.  

She has been an assistant professor in the Department of 
Mechanical Engineering in the University of Maryland at 
College Park since January 2005. Her research interests include 
smart sensors, sensor systems for military, civil, mechanical, 
electrical, biochemical, and environmental applications, 
collaborative sensor signal processing, and sensor networks. 

Dr. Yu is a member of the OSA, SPIE, ASME, ASEE, and 
SEM. Her awards include the Invention of the Year Award from 
the University of Maryland in 2002. 

 
 
 
 

Jason H. Li received his B.E. and M.S. degrees in Electrical 
Engineering from the Tsinghua University, Beijing, China in 
1993 and 1996 respectively, and his Ph.D. degree in Electrical 
and Computer Engineering, from the University of Maryland at 
College Park, USA in 2002 majoring in computer 
communication networks.  

He is currently a senior research scientist at Intelligent 
Automation, Inc., Rockville, MD, USA. Prior to that, he was a 
senior research scientist in Hughes Network Systems. His 
research interests lie in the general area of computer 
communication networks, including network protocols, network 
security, network management and control, and distributed 
software agents. 

Dr. Li is a member of the IEEE. 
  

 
 
 

Renato Levy received his BSEE degree in electrical 
engineering from the Federal University of Rio de Janeiro, 
Brazil in 1986, his MBA degree from Institute for Business and 
market economy, Brazil in 1992, and his D.Sc. degree in 
computer science from the George Washington University, 
USA in 2004. 

He is currently a principal scientist at Intelligent Automation, 
Inc., Rockville, MD, USA. His research interests include 
distributed systems, embedded systems, modeling and 
simulation, software engineering, and wireless networks. 

Dr. Levy is a member of the IEEE and ACM. 

JOURNAL OF NETWORKS, VOL. 1, NO. 1, MAY 2006 19

© 2006 ACADEMY PUBLISHER


